

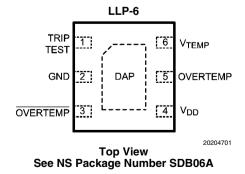
1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor

General Description

The LM26LV/LM26LV-Q1 is a low-voltage, precision, dualoutput, low-power temperature switch and temperature sensor. The temperature trip point (T_{TRIP}) can be preset at the factory to any temperature in the range of 0°C to 150°C in 1°C increments. Built-in temperature hysteresis (T_{HYST}) keeps the output stable in an environment of temperature instability.

In normal operation the LM26LV/LM26LV-Q1 temperature switch outputs assert when the die temperature exceeds T_{TRIP} . The temperature switch outputs will reset when the temperature falls below a temperature equal to $(T_{TRIP} - T_{HYST})$. The OVERTEMP digital output, is active-high with a push-pull structure, while the OVERTEMP digital output, is active-low with an open-drain structure.

The analog output, $V_{\text{TEMP}},$ delivers an analog output voltage with Negative Temperature Coefficient (NTC).


Driving the TRIP TEST input high: (1) causes the digital outputs to be asserted for in-situ verification and, (2) causes the threshold voltage to appear at the V_{TEMP} output pin, which could be used to verify the temperature trip point.

The LM26LV/LM26LV-Q1's low minimum supply voltage makes it ideal for 1.8 Volt system designs. Its wide operating range, low supply current, and excellent accuracy provide a temperature switch solution for a wide range of commercial and industrial applications.

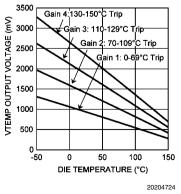
Applications

- Cell phones and Wireless Transceivers
- Digital Cameras
- Battery Management
- Automotive
- Disk Drives

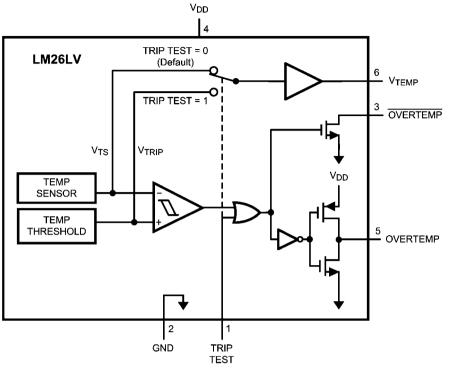
Connection Diagram

Games and Appliances

Features


- Low 1.6V operation
- Low quiescent current
- Latching function: device can latch the Over Temperature condition
- Push-pull and open-drain temperature switch outputs
- Wide trip point range of 0°C to 150°C
- Very linear analog V_{TEMP} temperature sensor output
- V_{TEMP} output short-circuit protected
- Accurate over -50°C to 150°C temperature range
- 2.2 mm by 2.5 mm (typ) LLP-6 package
- Excellent power supply noise rejection
- LM26LVQISD-130 and LM26LVQISD-135 are AEC-Q100 Grade 0 qualified and is manufactured on an Automotive Grade flow. For other trip points, contact your sales office.

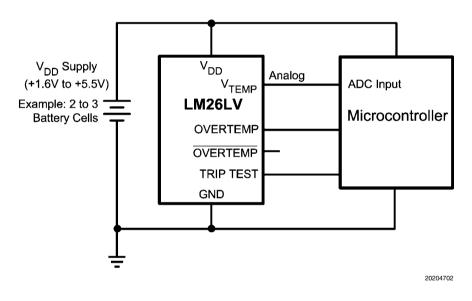
Key Specifications


Supply Voltage		1.6V to 5.5V
Supply Current		8 µA (typ)
Accuracy, Trip Point Temperature	0°C to 150°C	±2.2°C
Accuracy, V _{TEMP}	0°C to 150°C	±2.3°C
	0°C to 120°C	±2.2°C
	-50° C to 0° C	±1.7°C
V _{TEMP} Output Drive		±100 μA
Operating Temperature	-50	D°C to 150°C
Hysteresis Temperature	4.	5°C to 5.5°C

Typical Transfer Characteristic

V_{TEMP} Analog Voltage vs Die Temperature

Block Diagram


20204703

Pin Descriptions

Pin No.	Name	Туре	Equivalent Circuit	Description
1	TRIP TEST	Digital Input	VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD	TRIP TEST pin. Active High input.If TRIP TEST = 0 (Default) then: $V_{TEMP} = V_{TS}$, Temperature Sensor Output VoltageIf TRIP TEST = 1 then:OVERTEMP and OVERTEMP outputs are asserted and $V_{TEMP} = V_{TRIP}$, Temperature Trip Voltage.This pin may be left open if not used.
5	OVERTEMP	Digital Output		Over Temperature Switch output Active High, Push-Pull Asserted when the measured temperature exceeds the Trip Point Temperature or if TRIP TEST = 1 This pin may be left open if not used.
3	OVERTEMP	Digital Output		Over Temperature Switch output Active Low, Open-drain (See Section 2.1 regarding required pull-up resistor.) Asserted when the measured temperature exceeds the Trip Point Temperature or if TRIP TEST = 1 This pin may be left open if not used.

Pin No.	Name	Туре	Equivalent Circuit	Description
6	V _{TEMP}	Analog Output	VDD VSENSE	V_{TEMP} Analog Voltage Output If TRIP TEST = 0 then $V_{TEMP} = V_{TS}$, Temperature Sensor Output Voltage If TRIP TEST = 1 then $V_{TEMP} = V_{TRIP}$, Temperature Trip Voltage This pin may be left open if not used.
4	V _{DD}	Power		Positive Supply Voltage
2	GND	Ground		Power Supply Ground
DAP	Die Attach Pad			The best thermal conductivity between the device and the PCB is achieved by soldering the DAP of the package to the thermal pad on the PCB. The thermal pad can be a floating node. However, for improved noise immunity the thermal pad should be connected to the circuit GND node, preferably directly to pin 2 (GND) of the device.

Typical Application

Ordering Information

Order Number	Q Grade	Temp Trip Point, °C	Package Number	Top Mark	Transport Media
LM26LV/ LM26LVCISD-150		150°C	SDB06A	150	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-150		150°C	SDB06A	150	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-145		145°C	SDB06A	145	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-145		145°C	SDB06A	145	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-140		140°C	SDB06A	140	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-140		140°C	SDB06A	140	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-135		135°C	SDB06A	135	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-135		135°C	SDB06A	135	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-130		130°C	SDB06A	130	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-130		130°C	SDB06A	130	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-125		125°C	SDB06A	125	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-125		125°C	SDB06A	125	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-120		120°C	SDB06A	120	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-120		120°C	SDB06A	120	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-115		115°C	SDB06A	115	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-115		115°C	SDB06A	115	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-110		110°C	SDB06A	110	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-110		110°C	SDB06A	110	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-105		105°C	SDB06A	105	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-105		105°C	SDB06A	105	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-100		100°C	SDB06A	100	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-100		100°C	SDB06A	100	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-095		95°C	SDB06A	095	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-095		95°C	SDB06A	095	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-090		90°C	SDB06A	090	1000 Units on Tape and Reel

Order Number	Q Grade	Temp Trip Point, °C	Package Number	Top Mark	Transport Media
LM26LV/ LM26LVCISDX-090		90°C	SDB06A	090	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-085		85°C	SDB06A	085	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-085		85°C	SDB06A	085	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-080		80°C	SDB06A	080	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-080		80°C	SDB06A	080	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-075		75°C	SDB06A	075	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-075		75°C	SDB06A	075	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-070		70°C	SDB06A	070	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-070		70°C	SDB06A	070	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-065		65°C	SDB06A	065	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-065		65°C	SDB06A	065	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-060		60°C	SDB06A	060	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-060		60°C	SDB06A	060	4500 Units on Tape and Reel
LM26LV/ LM26LVCISD-050		50°C	SDB06A	050	1000 Units on Tape and Reel
LM26LV/ LM26LVCISDX-050		50°C	SDB06A	050	4500 Units on Tape and Reel
LM26LV/ LM26LVQISD-130	0	130°C	SDB06A	Q30	1000 Units on Tape and Reel
LM26LV/ LM26LVQISDX-130	0	130°C	SDB06A	Q30	4500 Units on Tape and Reel
LM26LV/ LM26LVQISD-135	0	135°C	SDB06A	Q35	1000 Units on Tape and Reel
LM26LV/ LM26LVQISDX-135	0	135°C	SDB06A	Q35	4500 Units on Tape and Reel

Absolute Maximum Ratings (Note 1)

Supply Voltage	-0.3V to +6.0V
Voltage at OVERTEMP pin	-0.3V to +6.0V
Voltage at OVERTEMP and	
V _{TEMP} pins	–0.3V to (V _{DD} + 0.5V)
TRIP TEST Input Voltage	–0.3V to (V _{DD} + 0.5V)
Output Current, any output pin	±7 mA
Input Current at any pin (<i>Note 2</i>)	5 mA
Storage Temperature	–65°C to +150°C
Maximum Junction Temperature	
T _{J(MAX)}	+155°C
ESD Susceptibility (Note 3):	
Human Body Model	4500V
Machine Model	300V
Charged Device Model	1000V
For soldering specifications: see p www.national.com and www.nation SOLDERING.pdf	

Operating Ratings (Note 1)

Specified Temperature Range:	$T_{MIN} \le T_A \le T_{MAX}$
LM26LV/LM26LV-Q1	$-50^{\circ}C \le T_A \le +150^{\circ}C$
Supply Voltage Range (V _{DD})	+1.6 V to +5.5 V
Thermal Resistance (θ _{JA}) (<i>Note 4</i>)	
LLP-6 (Package SDB06A)	152 °C/W

Accuracy Characteristics

Trip Point Accuracy

Parameter	Conditions		Limits (<i>Note 6</i>)	Units (Limit)
Trip Point Accuracy (Note 7)	0 – 150°C	V _{DD} = 5.0 V	±2.2	°C (max)

V_{TEMP} Analog Temperature Sensor Output Accuracy There are four gains corresponding to each of the four Temperature Trip Point Ranges. Gain 1 is the sensor gain used for Tem-perature Trip Point 0 - 69°C. Likewise Gain 2 is for Trip Points 70 - 109 °C; Gain 3 for 110 - 129 °C; and Gain 4 for 130 - 150 °C. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in the LM26LV/ LM26LV-Q1 Conversion Table.

Parameter		Conditions		Limits (<i>Note 6</i>)	Units (Limit)
		$T_A = 20^{\circ}C$ to $40^{\circ}C$	V _{DD} = 1.6 to 5.5 V	±1.8	
		$T_A = 0^\circ C$ to $70^\circ C$	V _{DD} = 1.6 to 5.5 V	±2.0	
	Gain 1: for Trip Point	$T_A = 0^{\circ}C$ to $90^{\circ}C$	V _{DD} = 1.6 to 5.5 V	±2.1	°C (max)
	Range 0 - 69°C	$T_A = 0^{\circ}C$ to $120^{\circ}C$	V _{DD} = 1.6 to 5.5 V	±2.2	°C (max)
		T _A = 0°C to 150°C	V _{DD} = 1.6 to 5.5 V	±2.3	
		$T_A = -50^{\circ}C$ to $0^{\circ}C$	V _{DD} = 1.7 to 5.5 V	±1.7	
		$T_A = 20^{\circ}C \text{ to } 40^{\circ}C$	V _{DD} = 1.8 to 5.5 V	±1.8	
		$T_A = 0^{\circ}C$ to $70^{\circ}C$	V _{DD} = 1.9 to 5.5 V	±2.0	
	Gain 2: for Trip Point	$T_A = 0^\circ C$ to $90^\circ C$	V _{DD} = 1.9 to 5.5 V	±2.1	°C (max)
	Range 70 - 109°C	$T_A = 0^{\circ}C$ to $120^{\circ}C$	V _{DD} = 1.9 to 5.5 V	±2.2	
		$T_A = 0^{\circ}C$ to $150^{\circ}C$	V _{DD} = 1.9 to 5.5 V	±2.3	
V _{TEMP} Temperature		$T_A = -50^{\circ}C$ to $0^{\circ}C$	V _{DD} = 2.3 to 5.5 V	±1.7	
Accuracy (Note 7)		$T_A = 20^{\circ}C \text{ to } 40^{\circ}C$	V _{DD} = 2.3 to 5.5 V	±1.8	
(1010 7)	Gain 3: for Trip Point Range 110 - 129°C	$T_A = 0^\circ C$ to $70^\circ C$	V _{DD} = 2.5 to 5.5 V	±2.0	°C (max)
		$T_A = 0^{\circ}C$ to $90^{\circ}C$	V _{DD} = 2.5 to 5.5 V	±2.1	
		$T_A = 0^{\circ}C$ to $120^{\circ}C$	V _{DD} = 2.5 to 5.5 V	±2.2	
		T _A = 0°C to 150°C	V _{DD} = 2.5 to 5.5 V	±2.3	
		$T_A = -50^{\circ}C$ to $0^{\circ}C$	V _{DD} = 3.0 to 5.5 V	±1.7	
		$T_A = 20^{\circ}C \text{ to } 40^{\circ}C$	V _{DD} = 2.7 to 5.5 V	±1.8	
		$T_A = 0^{\circ}C$ to $70^{\circ}C$	V _{DD} = 3.0 to 5.5 V	±2.0	
	Gain 4: for Trip Point	$T_A = 0^\circ C$ to $90^\circ C$	V _{DD} = 3.0 to 5.5 V	±2.1	°C (max)
	Range 130 - 150°C	T _A = 0°C to 120°C	V _{DD} = 3.0 to 5.5 V	±2.2	°C (max)
		$T_A = 0^{\circ}C$ to $150^{\circ}C$	V _{DD} = 3.0 to 5.5 V	±2.3	
		$T_A = -50^{\circ}C$ to $0^{\circ}C$	V _{DD} = 3.6 to 5.5 V	±1.7	

Electrical Characteristics

Unless otherwise noted, these specifications apply for $+V_{DD} = +1.6V$ to +5.5V. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$.

Symbol	Parameter		Conditions	Typical (<i>Note 5</i>)	Limits (<i>Note 6</i>)	Units (Limit)
GENERA	L SPECIFICATIONS					
۱ _s	Quiescent Power Supply Current			8	16	µA (max)
	Hustorasia				5.5	°C (max)
	Hysteresis			5	4.5	°C (min)
OVERTE	OVERTEMP DIGITAL OUTPUT		ACTIVE HIGH, PUSH-PULL			
		V _{DD} ≥ 1.6V	Source ≤ 340 µA			V (min)
		$V_{DD} \ge 2.0V$	Source ≤ 498 µA		V _{DD} – 0.2V	
v	Logio "1" Output Voltago	V _{DD} ≥ 3.3V	Source ≤ 780 µA			
V _{OH}	Logic "1" Output Voltage	V _{DD} ≥ 1.6V	Source ≤ 600 µA			
		$V_{DD} \ge 2.0V$	Source ≤ 980 µA		V _{DD} – 0.45V	V (min)
		$V_{DD} \ge 3.3V$	Source ≤ 1.6 mA			


Symbol	Parameter		Conditions	Typical (<i>Note 5</i>)	Limits (<i>Note 6</i>)	Units (Limit)
BOTH O	VERTEMP and OVERTEMP	DIGITAL OUTPUTS				
		$V_{DD} \ge 1.6V$	Sink ≤ 385 µA			
		V _{DD} ≥ 2.0V	Sink ≤ 500 µA		0.2	
V		V _{DD} ≥ 3.3V	Sink ≤ 730 µA			
V _{OL}	Logic "0" Output Voltage	V _{DD} ≥ 1.6V	Sink ≤ 690 µA			- V (max)
		V _{DD} ≥ 2.0V	Sink ≤ 1.05 mA	1	0.45	
		V _{DD} ≥ 3.3V	Sink ≤ 1.62 mA			
OVERTE	MP DIGITAL OUTPUT	ACTIVE LOW, OP	EN DRAIN			
	Logic "1" Output Leakage	T _A = 30 °C		0.001	4	
I _{ОН}	Current (Note 10)	T _A = 150 °C		0.025	1	μA (max)
V _{TEMP} AN	ALOG TEMPERATURE SEN	ISOR OUTPUT				
		Gain 1: If Trip Poir	nt = 0 - 69°C	-5.1		mV/°C
	V Sensor Gain	Gain 2: If Trip Poir	nt = 70 - 109°C	-7.7		mV/°C
	V_{TEMP} Sensor Gain	Gain 3: If Trip Point = 110 - 129°C		-10.3		mV/°C
		Gain 4: If Trip Point = 130 - 150°C		-12.8		mV/°C
			Source ≤ 90 µA	-0.1	-1	mV (max)
		1.6V ≤ V _{DD} < 1.8V	$(V_{DD} - V_{TEMP}) \ge 200 \text{ mV}$	-0.1	-1	
		$1.6V \le V_{DD} < 1.8V$	Sink ≤ 100 µA	0.1	1	m)/ (mov)
	V Lood Degulation		V _{TEMP} ≥ 260 mV	0.1	I	mV (max)
	V _{TEMP} Load Regulation (<i>Note 9</i>)		Source ≤ 120 µA	-0.1	-1	mV (max)
	(V _{DD} ≥ 1.8V	$(V_{DD} - V_{TEMP}) \ge 200 \text{ mV}$	-0.1	-1	III (IIIax)
		v _{DD} ≥ 1.6V	Sink ≤ 200 µA	0.1	1	m\/ (max)
			V _{TEMP} ≥ 260 mV	0.1		mV (max)
		Source	or Sink = 100 μA	1		Ω
	V _{DD} Supply- to-V _{TEMP}			0.29		mV
	DC Line Regulation	$V_{DD} = +1.6V$ to $+5$.5V	74		μV/V
	(Note 11)			-82		dB
CL	V _{TEMP} Output Load Capacitance	Without series resi	stor. See Section 4.2	1100		pF (max)

Electrical Characteristics

Unless otherwise noted, these specifications apply for $+V_{DD} = +1.6V$ to +5.5V. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$.

Symbol	Parameter	Conditions	Typical (<i>Note 5</i>)	Limits (<i>Note 6</i>)	Units (Limit)
TRIP TES	T DIGITAL INPUT				
V _{IH}	Logic "1" Threshold Voltage			V _{DD} - 0.5	V (min)
V _{IL}	Logic "0" Threshold Voltage			0.5	V (max)
I _{IH}	Logic "1" Input Current		1.5	2.5	µA (max)
I _{IL}	Logic "0" Input Current (<i>Note 10</i>)		0.001	1	µA (max)
TIMING			•		
t _{EN}	Time from Power On to Digital Output Enabled. See definition below.		1.1	2.3	ms (max)
t _{VTEMP}	Time from Power On to Analog Temperature Valid. See definition below.	$V_{\text{TEMP}} C_{\text{L}} = 0 \text{ pF} \text{ to } 1100 \text{ pF}$	1.0	2.9	ms (max)

Definitions of t_{EN} and $t_{V_{TEMP}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: When the input voltage (V₁) at any pin exceeds power supplies (V₁ < GND or V₁ > V_{DD}), the current at that pin should be limited to 5mA.

Note 3: The Human Body Model (HBM) is a 100pF capacitor charged to the specified voltage then discharged through a 1.5kΩ resistor into each pin. The Machine Model (MM) is a 200pF capacitor charged to the specified voltage then discharged directly into each pin. The Charged Device Model (CDM) is a specified circuit characterizing an ESD event that occurs when a device acquires charge through some triboelectric (frictional) or electrostatic induction processes and then abruptly touches a grounded object or surface.

Note 4: The junction to ambient temperature resistance (θ_{JA}) is specified without a heat sink in still air.

Note 5: Typicals are at $T_J = T_A = 25^{\circ}C$ and represent most likely parametric norm.

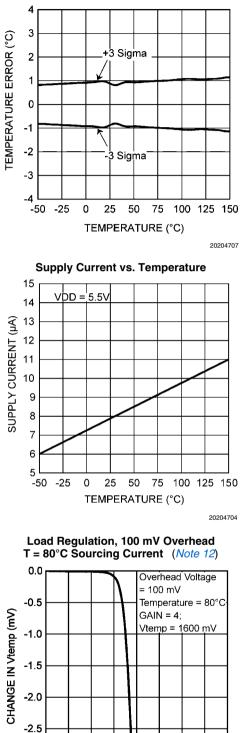
Note 6: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

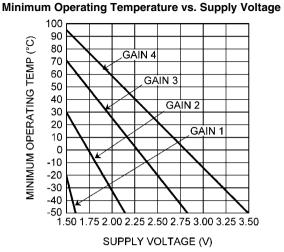
Note 7: Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

Note 8: Changes in output due to self heating can be computed by multiplying the internal dissipation by the temperature resistance.

Note 9: Source currents are flowing out of the LM26LV/LM26LV-Q1. Sink currents are flowing into the LM26LV/LM26LV-Q1.

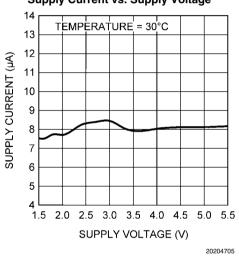
Note 10: The 1µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the current for every 15°C increase in temperature. For example, the 1nA typical current at 25°C would increase to 16nA at 85°C.

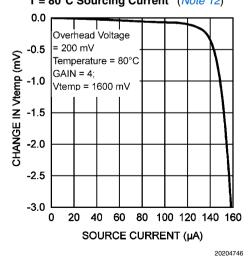

Note 11: Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Section 4.3.


Note 12: The curves shown represent typical performance under worst-case conditions. Performance improves with larger overhead ($V_{DD} - V_{TEMP}$), larger V_{DD} , and lower temperatures.

Note 13: The curves shown represent typical performance under worst-case conditions. Performance improves with larger V_{TEMP}, larger V_{DD} and lower temperatures.

Typical Performance Characteristics


V_{TEMP} Output Temperature Error vs. Temperature

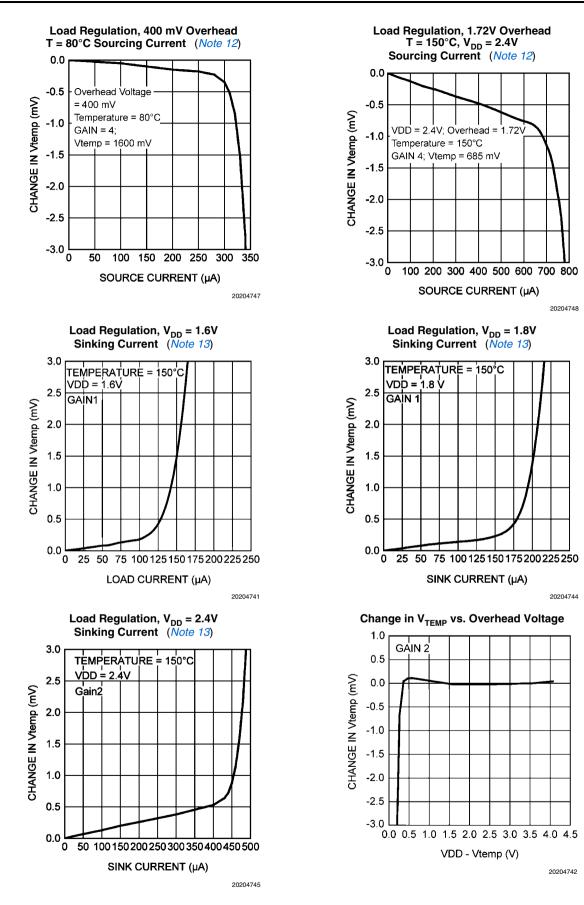


20204706

Supply Current vs. Supply Voltage

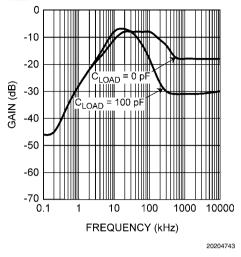
Load Regulation, 200 mV Overhead $T = 80^{\circ}C$ Sourcing Current (*Note 12*)

-3.0 ∟ 0


20 40 60

80 100 120 140 160

20204740


SOURCE CURRENT (µA)

Line Regulation

V_{TEMP} vs. Supply Voltage Gain 2: For Trip Points 70 - 109°C

TEMPERATURE = 30°C

GAIN 2

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

1365

1364

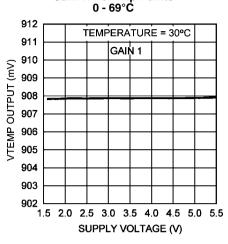
1363

1362

1361

1360

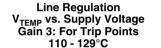
1359

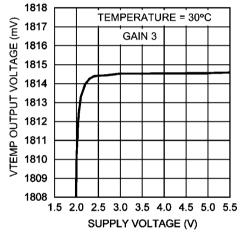

1358

1357

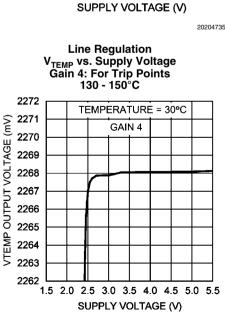
1356

1355


VTEMP OUTPUT VOLTAGE (mV)



Line Regulation V_{TEMP} vs. Supply Voltage


Gain 1: For Trip Points

20204734

20204736

20204737

1.0 LM26LV/LM26LV-Q1 V_{TEMP} vs Die Temperature Conversion Table

The LM26LV/LM26LV-Q1 has one out of four possible factory-set gains, Gain 1 through Gain 4, depending on the range of the Temperature Trip Point. The V_{TEMP} temperature sensor voltage, in millivolts, at each discrete die temperature over the complete operating temperature range, and for each of the four Temperature Trip Point ranges, is shown in the Conversion Table below. This table is the reference from which the LM26LV/LM26LV-Q1 accuracy specifications (listed in the Electrical Characteristics section) are determined. This table can be used, for example, in a host processor look-up table. See Section 1.1.1 for the parabolic equation used in the Conversion Table.

$\mathbf{V}_{\mathsf{TEMP}}$ Temperature Sensor Output Voltage vs Die Temperature Conversion Table

The V_{TEMP} temperature sensor output voltage, in mV, vs Die Temperature, in °C, for each of the four gains corresponding to each of the four Temperature Trip Point Ranges. Gain 1 is the sensor gain used for Temperature Trip Point 0 - 69°C. Likewise Gain 2 is for Trip Points 70 - 109 °C; Gain 3 for 110 - 129 °C; and Gain 4 for 130 - 150 °C. V_{DD} = 5.0V. The values in **bold** font are for the Trip Point range.

	V _{TEMP} , Analog Output Voltage, mV				
Die	Gain 1:	Gain 2:	Gain 3:	Gain 4:	
Temp.,	for	for	for	for	
°C	Т _{ткіР} = 0-69°С	T _{TRIP} = 70-109°C	T _{TRIP} = 110-129°C	T _{TRIP} = 130-150°C	
-50	1312	1967	2623	3278	
-49	1307	1960	2613	3266	
-48	1302	1952	2603	3253	
-47	1297	1945	2593	3241	
-46	1292	1937	2583	3229	
-45	1287	1930	2573	3216	
-44	1282	1922	2563	3204	
-43	1277	1915	2553	3191	
-42	1272	1908	2543	3179	
-41	1267	1900	2533	3166	
-40	1262	1893	2523	3154	
-39	1257	1885	2513	3141	
-38	1252	1878	2503	3129	
-37	1247	1870	2493	3116	
-36	1242	1863	2483	3104	
-35	1237	1855	2473	3091	
-34	1232	1848	2463	3079	
-33	1227	1840	2453	3066	
-32	1222	1833	2443	3054	
-31	1217	1825	2433	3041	
-30	1212	1818	2423	3029	
-29	1207	1810	2413	3016	
-28	1202	1803	2403	3004	
-27	1197	1795	2393	2991	
-26	1192	1788	2383	2979	
-25	1187	1780	2373	2966	
-24	1182	1773	2363	2954	
-23	1177	1765	2353	2941	
-22	1172	1757	2343	2929	
-21	1167	1750	2333	2916	
-20	1162	1742	2323	2903	
-19	1157	1735	2313	2891	
-18	1152	1727	2303	2878	
-17	1147	1720	2293	2866	
-16	1142	1712	2283	2853	
-15	1137	1705	2272	2841	

	V _{TEMP} ,	, Analog Output Voltage, mV		
Die	Gain 1:			Gain 4:
Temp.,	for	for	for	for
°C	Т _{ткіР} = 0-69°С	T _{TRIP} = 70-109°C	T _{TRIP} = 110-129°C	T _{TRIP} = 130-150°C
-14	1132	1697	2262	2828
-13	1127	1690	2252	2815
-12	1122	1682	2242	2803
-11	1116	1674	2232	2790
-10	1111	1667	2222	2777
-9	1106	1659	2212	2765
-8	1101	1652	2202	2752
-7	1096	1644	2192	2740
-6	1091	1637	2182	2727
-5	1086	1629	2171	2714
-4	1081	1621	2161	2702
-3	1076	1614	2151	2689
-2	1071	1606	2141	2676
-1	1066	1599	2131	2664
0	1061	1591	2121	2651
1	1056	1583	2111	2638
2	1051	1576	2101	2626
3	1046	1568	2090	2613
4	1041	1561	2080	2600
5	1035	1553	2070	2587
6	1030	1545	2060	2575
7	1025	1538	2050	2562
8	1020	1530	2040	2549
9	1015	1522	2029	2537
10	1010	1515	2019	2524
11	1005	1507	2009	2511
12	1000	1499	1999	2498
13	995	1492	1989	2486
14	990	1484	1978	2473
15	985	1477	1968	2460
16	980	1469	1958	2447
17	974	1461	1948	2435
18	969	1454	1938	2422
19	964	1446	1927	2409
20	959	1438	1917	2396
21	954	1431	1907	2383
22	949	1423	1897	2371
23	944	1415	1886	2358
24	939	1407	1876	2345
25	934	1400	1866	2332
26	928	1392	1856	2319
27	923	1384	1845	2307
28	918	1377	1835	2294
29	913	1369	1825	2281
30	908	1361	1815	2268
31	903	1354	1804	2255

DieGain 1:Gain 2:Gain 3:Gain 4Temp.,forforforfor		V _{TEMP} , Analog Output Voltage, mV				
°C $T_{TRIP} =$ 0-69°C $T_{TRIP} =$ 70-109°C $T_{TRIP} =$ 110-129°C $T_{TRIP} =$ 130-150°3289813461794224233892133817842230348871331177422173588213231763220436877131517532191378721307174321783886713001732216539862129217222152408561284171221394185112761701212742846126916912114438411261168121014483612531670208845831124516602075468251238165020624782012301639204948815122216292036498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144<	Die				Gain 4:	
Imp Imp <thim< th=""> <thim< th=""> <thim< th=""></thim<></thim<></thim<>		for	for	for	for	
32 898 1346 1794 2242 33 892 1338 1784 2230 34 887 1331 1774 2217 35 882 1323 1763 2204 36 877 1315 1753 2191 37 872 1307 1743 2178 38 867 1300 1732 2165 39 862 1292 1722 2152 40 856 1284 1712 2139 41 851 1276 1701 2127 42 846 1269 1691 2114 43 841 1261 1681 2101 44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48	°C	T _{TRIP} =	T _{TRIP} =		T _{TRIP} =	
33 892 1338 1784 2230 34 887 1331 1774 2217 35 882 1323 1763 2204 36 877 1315 1753 2191 37 872 1307 1743 2178 38 867 1300 1732 2165 39 862 1292 1722 2152 40 856 1284 1712 2139 41 851 1276 1701 2127 42 846 1269 1691 2114 43 841 1261 1681 2101 44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49		0-69°C	70-109°C	110-129°C	130-150°C	
34 887 1331 1774 2217 35 882 1323 1763 2204 36 877 1315 1753 2191 37 872 1307 1743 2178 38 867 1300 1732 2165 39 862 1292 1722 2152 40 856 1284 1712 2139 41 851 1276 1701 2127 42 846 1269 1691 2114 43 841 1261 1681 2101 44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50	32	898	1346	1794	2242	
35 882 1323 1763 2204 36 877 1315 1753 2191 37 872 1307 1743 2178 38 867 1300 1732 2165 39 862 1292 1722 2152 40 856 1284 1712 2139 41 851 1276 1701 2127 42 846 1269 1691 2114 43 841 1261 1681 2101 44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51	33	892	1338	1784	2230	
36 877 1315 1753 2191 37 872 1307 1743 2178 38 867 1300 1732 2165 39 862 1292 1722 2152 40 856 1284 1712 2139 41 851 1276 1701 2127 42 846 1269 1691 2114 43 841 1261 1681 2101 44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51 800 1199 1598 1997 52	34	887	1331	1774	2217	
37 872 1307 1743 2178 38 867 1300 1732 2165 39 862 1292 1722 2152 40 856 1284 1712 2139 41 851 1276 1701 2127 42 846 1269 1691 2114 43 841 1261 1681 2101 44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51 800 1199 1598 1997 52 794 1191 1588 1944 53	35	882	1323	1763	2204	
38 867 1300 1732 2165 39 862 1292 1722 2152 40 856 1284 1712 2139 41 851 1276 1701 2127 42 846 1269 1691 2114 43 841 1261 1681 2101 44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51 800 1199 1598 1997 52 794 1191 1588 1984 53 789 1183 1577 1971 54	36	877	1315	1753	2191	
39862129217222152408561284171221394185112761701212742846126916912114438411261168121014483612531670208845831124516602075468251238165020624782012301639204948815122216292036498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144152519075975811371515188161748112114941868627431113148418556373711051473184264732109814631829	37	872	1307	1743	2178	
408561284171221394185112761701212742846126916912114438411261168121014483612531670208845831124516602075468251238165020624782012301639204948815122216292036498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144152519075975811371515188161748112114941868627431113148418556373711051473184264732109814631829	38	867	1300	1732	2165	
4185112761701212742846126916912114438411261168121014483612531670208845831124516602075468251238165020624782012301639204948815122216292036498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144152519075975811371515188161748112114941868627431113148418556373711051473184264732109814631829	39	862	1292	1722	2152	
42846126916912114438411261168121014483612531670208845831124516602075468251238165020624782012301639204948815122216292036498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144152519075975811371515188161748112114941868627431113148418556373711051473184264732109814631829	40	856	1284	1712	2139	
438411261168121014483612531670208845831124516602075468251238165020624782012301639204948815122216292036498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144152519075975811371515188161748112114941868627431113148418556373711051473184264732109814631829	41	851	1276	1701	2127	
44 836 1253 1670 2088 45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51 800 1199 1598 1997 52 794 1191 1588 1984 53 789 1183 1577 1971 54 784 1176 1567 1958 55 779 1168 1557 1946 56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1881 61	42	846	1269	1691	2114	
45 831 1245 1660 2075 46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51 800 1199 1598 1997 52 794 1191 1588 1984 53 789 1183 1577 1971 54 784 1176 1567 1958 55 779 1168 1557 1946 56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1881 61 748 1121 1494 1868 62	43	841	1261	1681	2101	
46 825 1238 1650 2062 47 820 1230 1639 2049 48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51 800 1199 1598 1997 52 794 1191 1588 1984 53 789 1183 1577 1971 54 784 1176 1567 1958 55 779 1168 1557 1946 56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1894 60 753 1129 1505 1881 61 748 1121 1494 1868 62	44	836	1253	1670	2088	
4782012301639204948815122216292036498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144152519075975811371515188161748112114941868627431113148418556373711051473184264732109814631829	45	831	1245	1660	2075	
48 815 1222 1629 2036 49 810 1214 1619 2023 50 805 1207 1608 2010 51 800 1199 1598 1997 52 794 1191 1588 1984 53 789 1183 1577 1971 54 784 1176 1567 1958 55 779 1168 1557 1946 56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1894 60 753 1129 1505 1881 61 748 1121 1494 1868 62 743 1113 1484 1855 63 737 1105 1473 1842 64	46	825	1238	1650	2062	
498101214161920235080512071608201051800119915981997527941191158819845378911831577197154784117615671958557791168155719465677411601546193357769115215361920587631144152519075975811371515188461748112114941868627431113148418556373711051473184264732109814631829	47	820	1230	1639	2049	
508051207160820105180011991598199752794119115881984537891183157719715478411761567195855779116815571946567741160154619335776911521536192058763114415251907597581137151518946075311291505188161748112114941868627431113148418556373711051473184264732109814631829	48	815	1222	1629	2036	
5180011991598199752794119115881984537891183157719715478411761567195855779116815571946567741160154619335776911521536192058763114415251907597581137151518946075311291505188161748112114941868627431113148418556373711051473184264732109814631829	49	810	1214	1619	2023	
52 794 1191 1588 1984 53 789 1183 1577 1971 54 784 1176 1567 1958 55 779 1168 1557 1946 56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1894 60 753 1129 1505 1881 61 748 1121 1494 1868 62 743 1113 1484 1855 63 737 1105 1473 1842 64 732 1098 1463 1829	50	805	1207	1608	2010	
53 789 1183 1577 1971 54 784 1176 1567 1958 55 779 1168 1557 1946 56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1884 60 753 1129 1505 1881 61 748 1121 1494 1868 62 743 1113 1484 1855 63 737 1105 1473 1842 64 732 1098 1463 1829	51	800	1199	1598	1997	
54 784 1176 1567 1958 55 779 1168 1557 1946 56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1884 60 753 1129 1505 1881 61 748 1121 1494 1868 62 743 1113 1484 1855 63 737 1105 1473 1842 64 732 1098 1463 1829	52	794	1191	1588	1984	
55779116815571946567741160154619335776911521536192058763114415251907597581137151518946075311291505188161748112114941868627431113148418556373711051473184264732109814631829	53	789	1183	1577	1971	
56 774 1160 1546 1933 57 769 1152 1536 1920 58 763 1144 1525 1907 59 758 1137 1515 1894 60 753 1129 1505 1881 61 748 1121 1494 1868 62 743 1113 1484 1855 63 737 1105 1473 1842 64 732 1098 1463 1829	54	784	1176	1567	1958	
5776911521536192058763114415251907597581137151518946075311291505188161748112114941868627431113148418556373711051473184264732109814631829	55	779	1168	1557	1946	
58 763 1144 1525 1907 59 758 1137 1515 1894 60 753 1129 1505 1881 61 748 1121 1494 1868 62 743 1113 1484 1855 63 737 1105 1473 1842 64 732 1098 1463 1829	56	774	1160	1546	1933	
597581137151518946075311291505188161748112114941868627431113148418556373711051473184264732109814631829	57	769	1152	1536	1920	
60 753 11291505188161 748 11211494186862 743 11131484185563 737 11051473184264 732 109814631829	58	763	1144	1525	1907	
61 748 11211494186862 743 11131484185563 737 11051473184264 732 109814631829	59	758	1137	1515	1894	
627431113148418556373711051473184264732109814631829	60	753	1129	1505	1881	
63 737 1105 1473 1842 64 732 1098 1463 1829	61	748	1121	1494	1868	
64 732 1098 1463 1829	62	743	1113	1484	1855	
	63	737	1105	1473	1842	
65 727 1090 1453 1816	64	732	1098	1463	1829	
	65	727	1090	1453	1816	
66 722 1082 1442 1803	66	722	1082	1442	1803	
67 717 1074 1432 1790	67	717	1074	1432	1790	
68 711 1066 1421 1776	68	711	1066	1421	1776	
69 706 1059 1411 1763	69	706	1059	1411	1763	
70 701 1051 1400 1750	70	701	1051	1400	1750	
71 696 1043 1390 1737	71	696	1043	1390	1737	
72 690 1035 1380 1724	72	690	1035	1380	1724	
73 685 1027 1369 1711	73	685	1027	1369	1711	
74 680 1019 1359 1698	74	680	1019	1359	1698	
75 675 1012 1348 1685	75	675	1012	1348	1685	
76 670 1004 1338 1672				1338		
77 664 996 1327 1659						

	V _{TEMP} , Analog Output Voltage, mV				
Die Temp.,	Gain 1:			Gain 4: for	
°C	T _{TRIP} = 0-69°C	T _{TRIP} = 70-109°C	T _{TRIP} = 110-129°C	T _{TRIP} =	
78	659	988	1317	1646	
79	654	980	1306	1633	
80	649	972	1296	1620	
81	643	964	1285	1620	
82	638	957	1275	1593	
83	633	949	1264	1580	
84	628	941	1254	1567	
85	622	933	1243	1554	
86	617	925	1233	1541	
87	612	917	1222	1528	
88	607	909	1212	1515	
89	601	901	1201	1501	
90	596	894	1201	1488	
91	590	886	1180	1400	
92	586	878	1170	1462	
93	580	870	1159	1449	
93	575	862	1149	1449	
94	570	854	1138	1430	
95	564	846	1128	1422	
90 97	559	838	1120	1396	
97	559	830	1106	1396	
98 99	549	822	1096	1370	
100				1370	
100	543	814	1085	1343	
101	538 533	807 799	1075 1064	1343	
102		799	1054		
103	527			1317	
104	522 517	783 775	1043 1032	1304 1290	
	-				
106	512	767	1022	1277	
107 108	506 501	759	1011	1264 1251	
		751 743			
109 110	496 490	735	990 979	1237 1224	
111	490	735	979	1224	
		727	969 958		
112 113	480 474	719	958 948	1198 1184	
113					
114	469 464	703 695	937	1171 1158	
115	464	695	926 916	1156	
117	459	679	905	1145	
117	453	679	905 894	1118	
119	443	663 655	884	1105	
120 121	437 432	655 647	873 862	1091 1078	
121	432	639	852	1078	
122	427	639	852 841	1065	

	V _{TEMP} , Analog Output Voltage, mV				
Die	Gain 1:	Gain 2:	Gain 3:	Gain 4:	
Temp.,	for	for	for	for	
°C	T _{TRIP} =	T _{TRIP} =	T _{TRIP} =	T _{TRIP} =	
	0-69°C		110-129°C	130-150°C	
124	416	623	831	1038	
125	411	615	820	1025	
126	405	607	809	1011	
127	400	599	798	998	
128	395	591	788	985	
129	389	583	777	971	
130	384	575	766	958	
131	379	567	756	945	
132	373	559	745	931	
133	368	551	734	918	
134	362	543	724	904	
135	357	535	713	891	
136	352	527	702	878	
137	346	519	691	864	
138	341	511	681	851	
139	336	503	670	837	
140	330	495	659	824	
141	325	487	649	811	
142	320	479	638	797	
143	314	471	627	784	
144	309	463	616	770	
145	303	455	606	757	
146	298	447	595	743	
147	293	438	584	730	
148	287	430	573	716	
149	282	422	562	703	
150	277	414	552	690	

1.1 $\rm V_{TEMP}$ vs die temperature approximations

The LM26LV/LM26LV-Q1's V_{TEMP} analog temperature output is very linear. The Conversion Table above and the equation in Section 1.1.1 represent the most accurate typical performance of the V_{TEMP} voltage output vs Temperature.

1.1.1 The Second-Order Equation (Parabolic)

The data from the Conversion Table, or the equation below, when plotted, has an umbrella-shaped parabolic curve. V_{TEMP} is in mV.

GAIN1:
$$V_{TEMP} = 907.9 - 5.132 \times (T_{DIE} - 30^{\circ}C) - 1.08e-3 \times (T_{DIE} - 30^{\circ}C)^{2}$$

GAIN2: $V_{TEMP} = 1361.4 - 7.701 \times (T_{DIE} - 30^{\circ}C) - 1.60e-3 \times (T_{DIE} - 30^{\circ}C)^{2}$
GAIN3: $V_{TEMP} = 1814.6 - 10.270 \times (T_{DIE} - 30^{\circ}C) - 2.12e-3 \times (T_{DIE} - 30^{\circ}C)^{2}$
GAIN4: $V_{TEMP} = 2268.1 - 12.838 \times (T_{DIE} - 30^{\circ}C) - 2.64e-3 \times (T_{DIE} - 30^{\circ}C)^{2}$

1.1.2 The First-Order Approximation (Linear)

For a quicker approximation, although less accurate than the second-order, over the full operating temperature range the linear formula below can be used. Using this formula, with the constant and slope in the following set of equations, the best-fit V_{TEMP} vs Die Temperature performance can be calculated with an approximation error less than 18 mV. V_{TEMP} is in mV.

 $\begin{aligned} & \text{GAIN1: } V_{\text{TEMP}} = 1060 - 5.18 \text{ x } T_{\text{DIE}} \\ & \text{GAIN2: } V_{\text{TEMP}} = 1590 - 7.77 \text{ x } T_{\text{DIE}} \\ & \text{GAIN3: } V_{\text{TEMP}} = 2119 - 10.36 \text{ x } T_{\text{DIE}} \\ & \text{GAIN4: } V_{\text{TEMP}} = 2649 - 12.94 \text{ x } T_{\text{DIE}} \end{aligned}$

1.1.3 First-Order Approximation (Linear) over Small Temperature Range

For a linear approximation, a line can easily be calculated over the desired temperature range from the Conversion Table using the two-point equation:

$$V - V_1 = \left(\frac{V_2 - V_1}{T_2 - T_1}\right) \times (T - T_1)$$

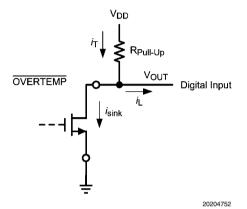
Where V is in mV, T is in °C, T_1 and V_1 are the coordinates of the lowest temperature, T_2 and V_2 are the coordinates of the highest temperature.

For example, if we want to determine the equation of a line with Gain 4, over a temperature range of 20°C to 50°C, we would proceed as follows:

V - 2396 mV =
$$\left(\frac{2010 \text{ mV} - 2396 \text{ mV}}{50^{\circ}\text{C} - 20^{\circ}\text{C}}\right) \times (\text{T} - 20^{\circ}\text{C})$$

V - 2396 mV = (-12.8 mV/°C) × (T - 20°C)

Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest.


2.0 OVERTEMP and OVERTEMP Digital Outputs

The OVERTEMP Active High, Push-Pull Output and the OVERTEMP Active Low, Open-Drain Output both assert at the same time whenever the Die Temperature reaches the factory preset Temperature Trip Point. They also assert simultaneously whenever the TRIP TEST pin is set high. Both outputs de-assert when the die temperature goes below the Temperature Trip Point - Hysteresis. These two types of digital outputs enable the user the flexibility to choose the type of output that is most suitable for his design. Either the OVERTEMP or the OVERTEMP Digital Output pins can be left open if not used.

2.1 OVERTEMP OPEN-DRAIN DIGITAL OUTPUT

The OVERTEMP Active Low, Open-Drain Digital Output, if used, requires a pull-up resistor between this pin and V_{DD}. The following section shows how to determine the pull-up resistor value.

Determining the Pull-up Resistor Value

The Pull-up resistor value is calculated at the condition of maximum total current, i_T, through the resistor. The total current is:

$$i_T = i_L + i_{sink}$$

where,

i _T	i_{T} is the maximum total current through the Pull-up Resistor at V _{OL} .
iL	i _L is the load current, which is very low for typical digital inputs.
V _{OUT}	V_{OUT} is the Voltage at the $\overline{OVERTEMP}$ pin. Use V_{OL} for calculating the Pull-up resistor.
V _{DD(Max)}	$V_{\text{DD}(\text{Max})}$ is the maximum power supply voltage to be used in the customer's system.

The pull-up resistor maximum value can be found by using the following formula:

$$R_{\text{pull-up}} = \frac{V_{\text{DD (Max)}} - V_{\text{OL}}}{i_{\text{T}}}$$

EXAMPLE CALCULATION

Suppose we have, for our example, a V_{DD} of 3.3 V ± 0.3V, a CMOS digital input as a load, a V_{OL} of 0.2 V.

(1) We see that for V_{OL} of 0.2 V the electrical specification for OVERTEMP shows a maximim i_{sink} of 385 µA.

(2) Let $i_1 = 1 \mu A$, then i_T is about 386 μA max. If we select 35 μA as the current limit then i_T for the calculation becomes 35 μA

(3) We notice that $V_{DD(Max)}$ is 3.3V + 0.3V = 3.6V and then calculate the pull-up resistor as

 $R_{Pull-up} = (3.6 - 0.2)/35 \ \mu A = 97k$

(4) Based on this calculated value, we select the closest resistor value in the tolerance family we are using.

In our example, if we are using 5% resistor values, then the next closest value is 100 k $\Omega.$

2.2 NOISE IMMUNITY

The LM26LV/LM26LV-Q1 is virtually immune from false triggers on the OVERTEMP and $\overline{OVERTEMP}$ digital outputs due to noise on the power supply. Test have been conducted showing that, with the die temperature within 0.5°C of the temperature trip point, and the severe test of a 3 Vpp square wave "noise" signal injected on the V_{DD} line, over the V_{DD} range of 2V to 5V, there were no false triggers.

3.0 TRIP TEST Digital Input

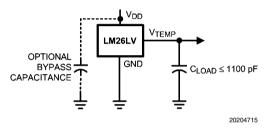
The TRIP TEST pin simply provides a means to test the OVERTEMP and OVERTEMP digital outputs electronically by causing them to assert, at any operating temperature, as a result of forcing the TRIP TEST pin high.

When the TRIP TEST pin is pulled high the $\rm V_{TEMP}$ pin will be at the $\rm V_{TRIP}$ voltage.

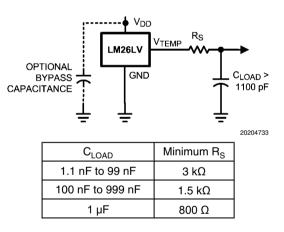
If not used, the TRIP TEST pin may either be left open or grounded.

4.0 V_{TEMP} Analog Temperature Sensor Output

The V_{TEMP} push-pull output provides the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. See the Applications Circuits section for more discussion of this topic. The LM26LV/LM26LV-Q1 is ideal for this and other applications which require strong source or sink current.


4.1 NOISE CONSIDERATIONS

The LM26LV/LM26LV-Q1's supply-noise rejection (the ratio of the AC signal on V_{TEMP} to the AC signal on V_{DD}) was measured during bench tests. It's typical attenuation is shown in the Typical Performance Characteristics section. A load capacitor on the output can help to filter noise.


For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 2 inches of the LM26LV/LM26LV-Q1.

4.2 CAPACITIVE LOADS

The V_{TEMP} Output handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the V_{TEMP} can drive a capacitive load less than or equal to 1100 pF as shown in *Figure 1*. For capacitive loads greater than 1100 pF, a series resistor is required on the output, as shown in *Figure 2*, to maintain stable conditions.

FIGURE 1. LM26LV/LM26LV-Q1 No Decoupling Required for Capacitive Loads Less than 1100pF.

4.3 VOLTAGE SHIFT

The LM26LV/LM26LV-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/ PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of V_{DD} and V_{TEMP} . The shift typically occurs when $V_{DD} - V_{TEMP} = 1.0V$.

This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in V_{DD} or V_{TEMP} . Since the shift takes place over a wide temperature change of 5°C to 20°C, V_{TEMP} is always monotonic. The accuracy specifications in the Electrical Characteristics table already includes this possible shift.

5.0 Mounting and Temperature Conductivity

The LM26LV/LM26LV-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

The best thermal conductivity between the device and the PCB is achieved by soldering the DAP of the package to the thermal pad on the PCB. The temperatures of the lands and traces to the other leads of the LM26LV/LM26LV-Q1 will also affect the temperature reading.

Alternatively, the LM26LV/LM26LV-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM26LV/LM26LV-Q1 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the V_{TEMP} output to ground or V_{DD} , the V_{TEMP} output from the LM26LV/LM26LV-Q1 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The thermal resistance junction-to-ambient (θ_{JA}) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. The equation used to calculate the rise in the LM26LV/LM26LV-Q1's die temperature is

$$\mathsf{T}_{\mathsf{J}} = \mathsf{T}_{\mathsf{A}} + \theta_{\mathsf{J}\mathsf{A}} \left[\left(\mathsf{V}_{\mathsf{D}\mathsf{D}} \mathsf{I}_{\mathsf{Q}} \right) + \left(\mathsf{V}_{\mathsf{D}\mathsf{D}} - \mathsf{V}_{\mathsf{T}\mathsf{E}\mathsf{M}\mathsf{P}} \right) \; \mathsf{I}_{\mathsf{L}} \right]$$

where T_A is the ambient temperature, I_Q is the quiescent current, I_L is the load current on the output, and V_O is the output voltage. For example, in an application where $T_A = 30$ °C, $V_{DD} = 5$ V, $I_{DD} = 9 \ \mu$ A, Gain 4, $V_{TEMP} = 2231$ mV, and $I_L = 2 \ \mu$ A, the junction temperature would be 30.021 °C, showing a self-heating error of only 0.021 °C. Since the LM26LV/LM26LV-Q1's junction temperature is the actual temperature being measured, care should be taken to minimize the load current that the V_{TEMP} output is required to drive. If The OVERTEMP output is used with a 100 k pull-up resistor, and this output is asserted (low), then for this example the additional contribution is $[(152^\circ \text{ C/W})x(5\text{V})^2/100\text{k}] = 0.038^\circ\text{C}$ for a total self-heating error of 0.059°C . *Figure 3* shows the thermal resistance of the LM26LV/LM26LV-Q1.

Device Number	NS Package Number	Thermal Resistance (θ _{JA})
LM26LVCSID/ LM26LVQCISD	SDB06A	152° C/W

FIGURE 3. LM26LV/LM26LV-Q1 Thermal Resistance

6.0 Applications Circuits

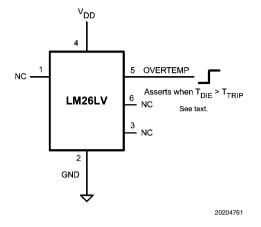


FIGURE 5. Temperature Switch Using Open-Drain Output

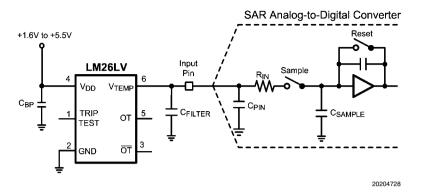


FIGURE 6. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage

Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LM26LV/LM26LV-Q1 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (C_{FILTER}). The size of C_{FILTER} depends on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.

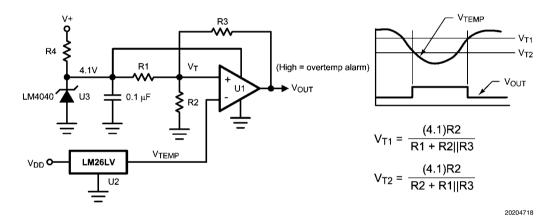


FIGURE 7. Celsius Temperature Switch

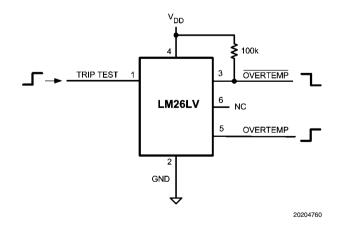


FIGURE 8. TRIP TEST Digital Output Test Circuit

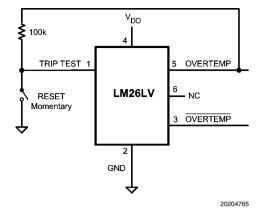
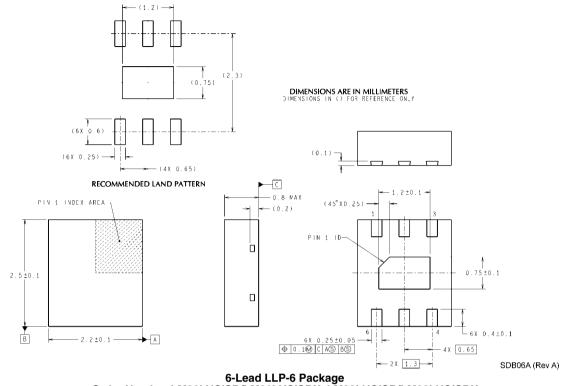



FIGURE 9. Latch Circuit using OVERTEMP Output

The TRIP TEST pin, normally used to check the operation of the OVERTEMP and OVERTEMP pins, may be used to latch the outputs whenever the temperature exceeds the programmed limit and causes the digital outputs to assert. As shown in the figure, when OVERTEMP goes high the TRIP TEST input is also pulled high and causes OVERTEMP output to latch high and the OVERTEMP output to latch low. The latch can be released by either momentarily pulling the TRIP TEST pin low (GND), or by toggling the power supply to the device. The resistor limits the current out of the OVERTEMP output pin.

Physical Dimensions inches (millimeters) unless otherwise noted

6-Lead LLP-6 Package Order Number LM26LVCISD/LM26LVCISDX, LM26LVQISD/LM26LVQISDX NS Package Number SDB06A

Notes

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated